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Abstract

The widespread adoption of Batch Normalization (BN) in
contemporary deep neural architectures has demonstrated sig-
nificant efficacy, particularly in the domain of Unsupervised
Domain Adaptation (UDA) for cross-domain applications.
Notwithstanding its success, extant BN variants often con-
flate source and target domain information within identical
channels, potentially compromising transferability due to inter-
domain feature misalignment. To address this limitation, we
introduce Refined Batch Normalization (RBN), a novel nor-
malization paradigm that leverages estimated shift to quantify
discrepancies between estimated population statistics and their
expected values. Our pivotal observation reveals that estimated
shift can accumulate through BN stacking within the network,
potentially degrading target domain performance. We eluci-
date how RBN mitigates this accumulation, thereby enhancing
overall system efficacy. The practical implementation of this
technique is realized through the RBNBlock, which supplants
conventional BN with RBN in the bottleneck architecture of
residual networks. Extensive empirical evaluation across di-
verse cross-domain benchmarks corroborates the superiority
of RBN in augmenting inter-domain transferability. This per-
spective transcends immediate performance metrics, offering
a foundational lens through which subsequent research can
more deeply understand and refine the interplay between nor-
malization strategies and domain adaptation.

Code — https://github.com/EllenYiGe/RBN

Introduction

In the pursuit of enhanced feature transferability and domain-
specific knowledge acquisition, researchers have expanded
their focus beyond traditional feature alignment and pixel-
level image translation techniques to investigate the optimiza-
tion of feature normalization modules within deep neural
networks (DNNSs).

Batch Normalization (BN) (Ioffe and Szegedy 2015), while
instrumental in mitigating internal covariate shift within
DNNs, has been identified as potentially detrimental to
domain-specific information preservation in UDA contexts.
This limitation arises from the indiscriminate sharing of mean
and variance statistics across domains, an approach that fails
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to account for domain-specific nuances. To address this short-
coming, several innovative methodologies have emerged,
each aiming to retain crucial domain-specific knowledge.

AdaBN (Li et al. 2017a) pioneered the use of distinct
domain statistics for source and target domains. However,
its exclusive reliance on target statistics during inference
phases risks the loss of valuable source domain information.
AutoDIAL (Maria Carlucci et al. 2017) offers a more nuanced
approach, employing a shared weight parameter to merge
domain statistics on a channel-by-channel basis. In contrast,
InterBN (Wang et al. 2021) leverages scaling factors derived
from individual BN channels to orchestrate a self-adjusting
mechanism for channel importance, thereby facilitating the
preservation of domain-specific information.

These advancements underscore the critical role of feature
normalization in UDA, highlighting the ongoing efforts to
refine and optimize knowledge transfer across domains while
maintaining the integrity of domain-specific characteristics.

Up until now, certain methods have made progress via
unsupervised domain adaptation (UDA) approaches through
the discovery and utilization of domain-specific knowledge
contained in the BN channels, yet their generalizability is
currently limited under complicated scenarios. An important
drawback of BN is its dependency on the mini-batch size,
which according to (Huang et al. 2022), the error rate of
BN changes in inverse relation to batch size resulting in a
higher error rate as the batch size is decreased. This is a new
challenge, step we have no remedy in the domain adaptation
literature.

Inspired by the batch-free normalization (BFN) paradigm
(Huang et al. 2022), we investigate a different UDA BN
configuration during best practice: When we do not have
to use specific statistics of individual batches, we suggest
to replace them with expected statistics over a population
through required 3D histograms, computed on the source
data split. This approach normalizes these factors by taking
into consideration the inherent dynamic changes of the mean
activation distribution in the training stage which causes un-
reliable population statistics. We argue that the difference of
the estimated population statistics of BN and their “expected”
values becomes the “estimation shift” of BN — a notion we
introduce to clarify this issue.

Our research reveals a pivotal phenomenon: the cumulative
effect of batch normalization (BN) estimation shift within
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Figure 1: Key findings visualization: orange rectangles denote linear transformations; green circles represent non-linear opera-

tions.

neural networks during domain adaptation (as illustrated in
Figure 1). This discovery elucidates the substantial perfor-
mance deterioration observed in BN-equipped networks un-
der conventional normalization techniques, particularly when
confronted with distribution shifts in test data. Furthermore,
it underscores the necessity of adapting BN population statis-
tics in such scenarios.

Notably, our investigations demonstrate that the imple-
mentation of batch-free normalization (BFN) (Huang et al.
2022)—a technique that normalizes samples independently,
disregarding batch dimensionality—effectively mitigates the
accumulation of estimation shift in unsupervised domain
adaptation (UDA). This approach significantly ameliorates
network performance degradation in the presence of distribu-
tion shifts.

These insights culminated in the development of the RBN-
Block, a novel architectural element that strategically re-
places a single BN layer with Refined Batch Normalization
(RBN) at the network’s bottleneck. Our research contribu-
tions can be delineated as follows:

* We propose a novel approach to UDA based on Refined
Batch Normalization (RBN), exploiting the capability
of batch normalization layers to adapt with general ar-
chitectural changes. The main benefit of RBN is that it
avoids adding extra modules, allowing it to be easily im-
plemented and at lower computing cost since it is located
on the backbone network.

* RBN is surprisingly flexible, easily applicable to various
UDA approaches to enhance their performance holisti-
cally.

* RBN’s potentiality to achieve consistent and signif-
icant performance improvement is conclusively vali-
dated through extensive empirical evaluation over mul-
tiple cross-domain benchmarks, including Office-31,
ImageCLED-DA, Office-Home and VisDA-2017.

Related Work
Unsupervised Domain Adaptation (UDA)

For the unsupervised domain adaptation (UDA) (Fang et al.
2024), the loss functions are generally formulated under two-
tab paradigm. The first type of paradigm attempts to minimize

distributional differences across domains by matching sta-
tistical properties. Typical implementations of this strategy
are the Deep Domain Confusion (DDC) (Tzeng et al. 2014)
and Deep Adaptation Networks (DAN) (Long et al. 2015a),
both of which leverage Maximum Mean Discrepancy (MMD)
(Gretton et al. 2007) for measuring and then minimizing the
discrepancy across domains. JAN: Joint Adversarial Adap-
tation and Alignment (Long et al. 2017a) further improves
the adversarial distillation model by concatenating adver-
sarial learning with Maximum Mean Discrepancy (MMD)
via the Joint Maximum Mean Discrepancy. More recently,
newly developed domain discrepancy metrics have led to
further refinements in discrepancy measurement methodol-
ogy, including Sliced Wasserstein Distance (SWD) (Lee et al.
2019) and Contrastive Adaptation Network (CAN) (Kang
et al. 2019).

Normalization Techniques

In adaptation research, new normalization architectures (Li
et al. 2024) have been introduced to cater to the challenges
imposed by the domain. There have been some previous
works that have called for different statistics for source and
target domains like AdaBN (Li et al. 2017b) or an integration
of statistics on a per-channel basis, AutoDIAL (Cariucci et al.
2017), or separating the normalization statistics of source and
target such as Domain-Specific Batch Normalization (DSBN)
(Chang et al. 2019), or Transferable Normalization (TN)
(Wang et al. 2019a) to establish cross-domain statistical align-
ment using channel attention mechanisms, or ConvNorm (Li
and Vasconcelos 2019) to implement applied domain adap-
tation in a separate adaptation layer, or Domain Whitening
Transform (DWT) (Roy et al. 2019) to structure a domain-
specific whitening of the feature maps using dual covariance
matrices.

Methodology
Batch Normalization: Principles and Challenges

Let ¥ € R? denote a d-dimensional input to the MLP, i.e.
for a particular layer. In the training phase, the batch normal-
ization (Ioffe and Szegedy 2015) is used to normalize each



7
NG|
7

domain
discriminator

Figure 2: UDA method framework with source and target domain inputs.

neuron or channel based on m mini-batch data, formulated
as:

jj_BN(xj)—\“?;l,j—Lz...,d (1)
aj+e

Here, pi; denotes the mini-batch mean, calculated as the
average of m samples of x;, while 0]2 represents the variance
of m samples of (z; — 1;)2. A small constant e is introduced
to ensure numerical stability.

During the inference or testing phase, the population mean
fi and variance 52 of the layer input are requisite for deter-
ministic predictions:

Lj — Hy
2

g;

:i‘]:BNinf(xj): ,]:172,,d (2)

Given that direct computation of population statistics
{ji, 5%} is infeasible, we approximate them using {1, 52},
which are derived from running averages of mini-batch statis-
tics across training iterations ¢. These estimates are updated
using a factor 3:

At (1 _ p\nt—1 t—1
{ut)—Q(l B ™" + Bu 3)

61 =1—-p) (61 +8 (0t 1).
The discrepancy between BN’s behavior during training

and inference poses challenges, particularly in recurrent neu-
ral networks and scenarios involving small batch sizes, where

population statistics estimation may be inaccurate (Huang
et al. 2022).

To circumvent the necessity of population statistics estima-
tion, Batch-Free Normalization (BFN) (Huang et al. 2022)
has been proposed. This approach eschews normalization
along the batch dimension, ensuring consistency between
training and inference operations. Layer Normalization (LN)
(Ba, Kiros, and Hinton 2016) exemplifies this methodology,
standardizing the layer input within neurons for each training
sample:

5o N T H C_
&j = LN (z;) N i=12,....,d (@&

This method could help mitigate some of the issues faced
with normalizing over batches in specific neural networks
and training situations.

In the case of Layer Norm (LN) (Ba, Kiros, and Hinton
2016), pn = % Z?zl zj,o?=1%i= 19(x; — p)? refer to
the sample-specific mean and sample-specific variance, re-
spectively. LN generalizes this idea by normalizing the layer
input over neurons and normalizing neurons independently
within some defined groups. This method leads to more flexi-
bility than traditionally normalization approaches such that
they achieve better performance on visual tasks, especially
with small batch sizes during training.

The field was further advanced by Batch-Free Normaliza-
tion (BFN) (Huang et al. 2022), which solves the accumula-
tion of estimation drift in BFN. What sets the BFN apart is its
sample-independent normalization technique based on batch-
independent processing. The proposed technique is efficient
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Figure 3: Key findings visualized.

in combating the growing estimation drift by Batch Normal-
ization, which reduces performance loss of the network in
the presence of distributional variations.

Inspired by the BFN paradigm, we abord the multisource
Unsupervised Domain Adaptation (UDA) task from a per-
spective of arguing refined batch normalization. In this post,
we will present a transformative perspective that opens new
doors to tackle some of the most persistent problems facing
domain adaptation, particularly in cases where traditional
normalization approaches have not yielded satisfactory re-
sults.

By leveraging the strengths of BFN and applying them to
the UDA context, we posit that refined batch normalization
can provide a more robust framework for handling the inher-
ent distributional discrepancies between source and target
domains. This not only overcomes the shortcoming of tra-
ditional batch normalization under UDA scenarios but also
provides a new avenue for better adapting and generalizing
neural networks to heterogeneous domains.

Refine Batch Normalization (RBN)

At the same time, recent literature in UDA has proposed mul-
tiple approaches to overcome Batch Normalization (BN) lim-
itations. The key methods include AdaBN (Li et al. 2017b),
AutoDIAL (Cariucci et al. 2017), Domain-specific Whitening
Transform (DWT) (Roy et al. 2019), Domain-Specific Batch
Normalization (DSBN) (Chang et al. 2019) and Transferable
Normalization (TN) (Wang et al. 2019a). The above three
techniques of UDA normalization are depicted in comparison
with our proposed Robust Batch Normalization (RBN) in
Figure 3.

A common thread among these methodologies is the imple-
mentation of separate normalization strategies to circumvent
the sharing of identical mean and variance parameters. How-
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Figure 4: (a) Larger batch size improves network perfor-
mance. (b) ESM increases with more layers.

ever, this approach is not without its drawbacks, particularly
in terms of estimation bias. This phenomenon occurs when
the estimated population statistics derived from BN fail to
accurately reflect the expected statistics, potentially compro-
mising the efficacy of the normalization process.

Given the critical role of batch normalization in deep learn-
ing architectures, it is imperative to conduct a thorough inves-
tigation into the ramifications of estimation bias on network
performance within the context of UDA. To this end, our
research endeavors to quantitatively assess the discrepancy
between estimated and expected population statistics in UDA
scenarios.

We introduce fi (expected pop mean of BN) and 52 (ex-
pected pop variance of BN), and we use /i and 52 to denote
their estimated quantities.

In addition, we perform an experimental analysis in this
work to shed light on the effect of batch normalization estima-
tion bias on UDA network performance. In addition, through
this empirical analysis, we seek to quantify the effects of
estimation bias, as well as offer possible solutions to mitigate
the bias and decrease its negative effect on UDA tasks.

Evaluation

In this section we conduct a thorough empirical study of the
effect of BN estimation shift on the performance of batch
normalized neural networks, and present potential remedies.

We demonstrate, based on our theoretical analysis over
our Batch Fission Normalization (BFN) framework that the
statistical pass of BN is not solely responsible for training
testing error gap, but specifically; inaccurate estimate of BN
statistics is the root cause. Novelties behind this estimation
uncertainty are cumulative, as networks deepen with BN
layers added.

In addition, the authors of BFN explain that the variations
in input distribution that may exist between training and test
datasets, can lead to even more estimation bias in estima-
tion (bias), which will further limit the generalization of the
network as well as the performance during testing. An in-
teresting observation in our experiments is that the standard
deviation of Estimation Shift Magnitude (£SM,,) for deep
BN layers may increase towards end of training.

In essence, our experimental results suggest that the esti-
mation shift in BN can potentially accumulate in networks
with stacked BN layers, likely resulting in detrimental ef-
fects on the network’s test performance, particularly when
distribution shifts occur between domains.



Methods A—-W D—-W W=D A—D D—A W—A Avg

Source Only (He et al. 2016) 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC (Tzeng et al. 2014) 75.6 96.0 98.2 76.5 62.2 61.5 78.3
DAN (Long et al. 2015b) 80.5 97.1 99.6 78.6 63.6 82.8 80.4

RTN (Long et al. 2016) 84.5 96.8 99.4 77.5 66.2 64.8 81.6
DANN (Ganin et al. 2016) 82.0 96.9 99.1 79.7 68.2 67.4 82.2
ADDA (Tzeng et al. 2017) 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN (Long et al. 2017b) 85.4 974 99.8 84.7 68.6 70.0 84.3

MADA (Pei et al. 2018) 90.0 974 99.6 87.8 70.3 66.4 85.2

MCD (Saito et al. 2018) 88.6 98.5 100.0 92.2 69.5 69.7 86.5

DWL (Xiao and Zhang 2021) 89.2 99.2 100.0 91.2 73.1 69.8 87.1

TADA (Wang et al. 2019b) 94.3 98.7 99.8 91.6 72.9 73.0 88.4
SHOT (Liang et al. 2022) 90.1 98.7 99.9 93.9 75.3 75.0 88.8

SymNet (Zhang et al. 2019) 95.2 98.8 100.0 93.9 74.6 72.5 88.4

SAR (Wang and Zhang 2020) 95.2 98.6 100.0 91.7 74.5 73.7 89.0
CDAN (Long et al. 2018) 94.1 98.6 100.0 92.9 71.0 69.3 87.7

CDAN+RBN 95.9 99.1 100.0 95.7 76.1 74.5 90.2

Table 1: Accuracy (%) on Office-31 with ResNet-50.

Methods I-P P—I 1I-C C—l1 C—P P—C Avg

Source Only (He et al. 2016) 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN (Long et al. 2015b) 74.5 82.2 92.8 86.3 69.2 89.8 82.5
RTN (Long et al. 2016) 75.6 86.8 95.3 86.9 72.7 92.2 84.9
DANN (Ganin et al. 2016) 75.0 86.0 96.2 87.0 74.3 91.5 85.0
JAN (Long et al. 2017b) 76.8 88.0 94.7 89.5 74.2 91.7 85.8
MADA (Pei et al. 2018) 75.0 87.9 96.0 88.8 75.2 92.2 85.8
SAFN (Xu et al. 2019) 78.0 91.7 96.2 91.1 77.0 94.7 88.1
SAR (Wang and Zhang 2020) 78.3 91.3 96.7 90.5 78.1 96.2 88.5
CDAN+RN (Huang et al. 2021) 78.6 92.7 97.2 92.8 79.1 94.8 89.2
CDAN (Long et al. 2018) 7T 90.7 97.7 91.3 74.2 94.3 87.7
CDAN+RBN 81.5 93.6 98.2 94.5 81.3 96.4 90.9

Table 2: Accuracy (%) on ImageCLEF-DA with ResNet-50.

Methods A—C A—P A—-R C—A C—=P C—R P—A P—-C P—-R R—+A R—=C R—=P Avg

Source Only (He etal. 2016) 34.9 50.0 58.0 374 41.9 46.2 38.5 31.2 604 539 41.2 59.9 46.1
SymNet (Zhang et al. 2019) 47.7 729 785 642 713 742 642 488 79.5 745 526 82.7 67.6
ATM (Li et al. 2020) 524 726 780 61.1 720 72.6 59.5 520 79.1 733 589 834 679
DAN (Long et al. 2015b)  43.6 57.0 679 458 56.5 604 44.0 43.6 57.7 63.1 515 743 56.3
TADA (Wang et al. 2019b) 53.1 723 772 59.1 712 721 59.7 531 784 724 60.0 829 67.6
DANN (Ganin et al. 2016) 45.6 59.3 70.1 47.0 585 60.9 46.1 43.7 685 63.2 51.8 76.8 57.6
JAN (Long et al. 2017b) 459 61.2 689 504 59.7 61.0 458 434 703 639 524 76.8 58.3
CDAN (Longetal. 2018) 50.7 70.6 76.0 576 70.0 70.0 574 509 773 709 56.7 81.6 65.8
CDAN+RBN 53.8 735 794 632 729 757 663 542 81.3 745 629 84.8 70.2

Table 3: Accuracy (%) on Office-Home with ResNet-50.

To further validate these observations, we conducted additional experiments using Conditional Domain Adver-



Methods aero truck train skate

person plant motor knife horse car bus bicycle Avg

Source Only (Long et al. 2018) 55.1 8.5 73.5 26.5
DAN (Long et al. 2015b) 87.1 20.7 85.8 36.3
DANN (Ganin et al. 2016) 81.9 7.8 82.8 54.6
MCD (Saito et al. 2018) 87.0 25.8 83.0 40.3
BSP+DANN (Chen et al. 2019) 92.2 37.1 84.5 66.9
BSP+CDAN (Chen et al. 2019) 92.4 38.4 82.1 77.9
DSAN (Zhu et al. 2020) 90.9 39.4 89.1 67.6
DWL (Xiao and Zhang 2021) 90.1 28.7 85.6 57.1

31.2 81.0 79.7 179 80.6 59.1 61.9 53.3 524
53.1 49.7 63.0 429 90.3 420 76.5 63.0 59.2
65.1 51.9 65.1 295 812 443 828 77.7 60.4
76.9 88.6 84.7 79.6 889 64.0 83.7 60.9 720
72.4 80.6 86.8 54.0 87.0 475 83.8 725 721
77.0 842 90.1 80.6 89.0 57.5 81.0 61.0 759
75.1 928 93.7 77.0 889 624 757 669 75.1
78.0 90.6 86.8 81.5 924 676 8.1 80.2 77.1

CDAN (Long et al. 2018) 85.2 38.0 81.9 76.0
CDAN+RBN 95.9 46.7 81.3 79.8

745 834 881 749 842 508 83.0 669 74.0
80.1 93.7 948 84.2 96.7 73.8 87.7 763 82.6

Table 4: Accuracy (%) on VisDA-2017 with ResNet-101.
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Figure 5: (a) Larger batch size improves performance. (b)
Replacing BN with GN reduces ESM.

sarial Networks (CDAN) as our baseline model (illus-
trated in Figure 2). We systematically varied the batch
size ({8,16,32,64}) and the number of training epochs
({10, 20, 30,40, 50, 60}).

As depicted in Figure 4 (a), our results demonstrate that
batch size exerts a notable influence on model performance.
Concurrently, Figure 4 (b) reveals that as the number of layers
increases, the model exhibits stable performance characteris-
tics.

These empirical observations further corroborate our hy-
pothesis that the distribution shift between source and target
domains in adaptation scenarios can induce estimation bias
in BN, negatively impacting domain adaptation performance.
Moreover, our findings suggest that in deeper BN architec-
tures, Estimation Shift Magnitudes (ESMs) have the potential
to attain higher values towards the conclusion of the training
process.

These insights underscore the critical need for robust nor-
malization techniques that can effectively mitigate estimation
bias, particularly in the context of deep neural networks and
domain adaptation scenarios. Our subsequent analyses will
focus on developing novel approaches to enhance the reliabil-
ity and effectiveness of batch normalization in diverse visual
recognition tasks across domains.

In our novel approach, we introduce a hybrid architec-
ture termed RBN, wherein we substitute the deeper Batch
Normalization (BN) layers with Group Normalization (GN)

layers. As illustrated in Figure 5, this strategic modification
effectively mitigates the cumulative estimation errors inher-
ent in BN when confronted with distribution shifts, thereby
enhancing the overall robustness and performance of the
network. The granular details pertaining to the implemen-
tation of RBN within the context of Conditional Domain
Adversarial Networks (CDAN) are elucidated in the Supple-
mentary Materials, providing a comprehensive overview of
our methodological framework.

Experiments
Datasets

Office-31 (Saenko et al. 2010) is a seminal benchmark in the
domain adaptation field.

ImageCLEF-DA ' dataset, derived from the ImageCLEF
2014 challenge, serves as another crucial benchmark for as-
sessing domain adaptation methodologies.

Office-Home (Li et al. 2019) represents a more expansive
benchmark, comprising four diverse domains: Art (A), Cli-
part (C), Product (P), and Real World (R).

VisDA-2017 (Peng et al. 2017) presents a particularly chal-
lenging simulation-to-real scenario. It features two highly dis-
parate domains: synthetic renderings of 3D models captured
under various angles and lighting conditions, and real-world
natural images. The dataset is structured around 12 classes,
distributed across training, validation, and test domains, of-
fering a rigorous evaluation of domain adaptation algorithms
in bridging the gap between simulated and real-world data.

Implementation Details

To evaluate the efficacy of our proposed Refined Batch Nor-
malization (RBN), we selected Conditional Domain Adver-
sarial Networks (CDAN) (Long et al. 2018) as our baseline,
designating our enhanced model as CDAN+RBN. Our im-
plementation leverages the Pytorch framework, employing
mini-batch stochastic gradient descent (SGD) for optimiza-
tion. We set the weight decay to 5 x 10~%, momentum to
0.9, and learning rate to 1073, For feature extraction, we

"http://imageclef.org/2014/adaptation



Methods A—-W D—-W W=D A—D D—A W—=A Avg

BN (He et al. 2016) 82.0 96.9 99.1 79.7  68.2 67.4 82.2

AdaBN (Li et al. 2016) 82.4 97.7 99.8 81.0 67.2 68.2  82.7
AutoDIAL (Maria Carlucci et al. 2017)  84.8 97.7 100.0 85.7 63.9 68.7 83.5
TransNorm (Wang et al. 2019b) 91.8 97.7 100.0 88.0 68.2 70.4  86.0
CDAN+RBN 95.9 99.1 100.0 957 76.1 74.5  90.2

Table 5: Accuracy on Office-31: BN, AdaBN, AutoDIAL, CDAN+RBN.

Methods A—W D—-W W—D A—D D—A W—A Avg

DANN (Ganin et al. 2016) 82.0 969 99.1 79.7 682 674 822
DANN (Ganin et al. 2016)+RBN 83.7 97.5 99.1 81.2 69.5 689 83.3
Source Only (He et al. 2016) 68.4 96.7 99.3 689 625 60.7 76.1
Source Only (He et al. 2016) 69.7 981 991 695 63.7 618 77.0
BSP (Ganin et al. 2016) 93.3 98.2 100.0 93.0 73.6 726 88.5
BSP (Ganin et al. 2016)+RBN 954 99.2 100.0 948 751 73.2 89.6

Table 6: Results with ResNet-50 and baselines.

utilize ResNet-50 as the backbone architecture for Office-
31, ImageCIEF-DA, and Office-Home datasets, while opting
for a pre-trained ResNet-101 for the VisDA-2017 dataset.
Our RBN implementation involves substituting BN layers
with Group Normalization (GN), incorporating RBNBlocks
throughout the network architecture. Specifically, we replace
a predetermined number of deeper layers. Our experimental
protocol involves utilizing all labeled source data and all un-
labeled target data, reporting the mean classification accuracy
across five randomized experiments for each transfer task. All
other training parameters remain consistent with the baseline
setup.

Results

Analysis Tables 1 through 4 detail the performance of
our CDAN+RBN approach. Our method consistently
outperforms the CDAN baseline, with average accuracy
improvements of 2.5%, 3.2%, and 4.4% on the Office-31,
ImageCLEF-DA, and Office-Home datasets, respectively.
Particularly, our approach excels in challenging tasks within
the Office-31 dataset, boosting accuracy from 71.0% to
76.1% for the D— A task, and from 69.3% to 74.5%
for the W— A task. On the VisDA-2017 dataset, our
method delivers an 8.6% improvement over the CDAN
baseline. Overall, our approach achieves superior average
classification performance compared to baseline methods
across all four datasets. Notably, since our method and
CDAN differ only by the replacement of BN with RBN, the
observed performance gains can be directly attributed to
RBN.

Comparative Analysis of Normalization Modules.
RBN, designed as an end-to-end trainable layer, enhances
generalization capabilities. To isolate RBN’s impact, we
conducted a comparative analysis against other normalization

methods, including vanilla BN, AdaBN, AutoDIAL, and
TransNorm, by substituting RBN with these alternatives
while keeping other network components constant. As shown
in Table 5, CDAN + RBN consistently outperforms the
comparative methods on the Office-31 dataset.

Efficacy of Our Proposed Method. To further vali-
date our method, we applied it to three additional baselines:
DANN (Ganin et al. 2016), Source Only (He et al. 2016), and
BSP (Ganin et al. 2016). Table 6 shows that DANN+RBN,
Source Only + RBN, and BSP + RBN yield improvements
of 1.1%, 0.9%, and 1.1%, respectively, over their baselines.
These results underscore the effectiveness and versatility of
our method as a plug-and-play solution.

Conclusion

Our findings indicate that BN’s estimation shifts can accumu-
late within a network, leading to potential performance drops
during inference under distribution shifts. We propose that
refining batch normalization can alleviate this issue, minimiz-
ing performance degradation. Our approach seamlessly inte-
grates into various network architectures by replacing the BN
layer with the RBN module during training. By shifting focus
from raw accuracy improvements to the underlying princi-
ples of normalization and domain alignment, the insights
gained from RBN inspire a richer theoretical comprehension
of cross-domain challenges. This conceptual groundwork
equips future investigators with a robust platform for innovat-
ing and advancing domain adaptation methodologies, paving
the way for more nuanced and principled exploration. Look-
ing ahead, we expect our method to have a meaningful impact
on real-world applications and large-scale model tasks.
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