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Abstract

High-quality, pixel-level annotated datasets are crucial for
training deep learning models, while their creation is often
labor-intensive, time-consuming, and costly. Generative dif-
fusion models have then gained prominence for producing
synthetic datasets, yet existing text-to-data methods struggle
with generating complex scenes involving multiple objects
and intricate spatial arrangements. To address these limita-
tions, we introduce FlexDataset, a framework that pioneers
the composition-to-data (C2D) paradigm. FlexDataset gen-
erates high-fidelity synthetic datasets with versatile annota-
tions, tailored for tasks like salient object detection, depth
estimation, and segmentation. Leveraging a meticulously de-
signed composition-to-image (C2I) framework, it offers pre-
cise positional and categorical control. Our Versatile Anno-
tation Generation (VAG) Plan A further enhances efficiency
by exploiting rich latent representations through tuned per-
ception decoders, reducing annotation time by nearly five-
fold. FlexDataset allows unlimited generation of customized,
multi-instance and multi-category (MIMC) annotated data.
Extensive experiments show that FlexDataset sets a new stan-
dard in synthetic dataset generation across multiple datasets
and tasks, including zero-shot and long-tail scenarios.

Code — https://github.com/EllenYiGe/FlexDataset

Introduction
The recent surge in generative models has greatly expanded
the field of computer vision, particularly in image synthe-
sis and automated perceptual tasks. Among these advance-
ments, text-to-image (T2I) diffusion models have emerged
as a powerful technique for generating highly realistic im-
ages from textual descriptions (Ramesh et al. 2022; Rom-
bach et al. 2022; Ge et al. 2023), offering substantial control
over visual content. However, these models often struggle
with generating complex scenes involving multiple objects,
diverse categories, and intricate spatial arrangements. This
challenge has led to the development of composition-to-
image (C2I) methods, which allow users to precisely define
the layout and attributes of multiple instances within a scene.
Significant advancements, such as LayoutDiffusion (Zheng
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et al. 2023), GLIGEN (Li et al. 2023b), and Instance Dif-
fusion (Wang et al. 2024a), have enhanced diffusion mod-
els by incorporating composition guidance, facilitating pre-
cise extraction of instance positions within generated im-
ages. Simultaneously, the creation of high-quality, versatile
annotations for perceptual tasks remains a significant chal-
lenge, as generating annotated datasets is labor-intensive,
time-consuming, and costly. For example, labeling a com-
plex scene with multiple objects can take 30 to 90 minutes
(Zhang et al. 2021), emphasizing the need for innovative
synthetic data generation techniques. DatasetGAN (Zhang
et al. 2021) pioneered the use of GAN feature spaces for
pixel-level labeling, and BigDatasetGAN (Li et al. 2022a)
expanded this approach to accommodate the large class di-
versity in datasets like ImageNet. However, these methods
are limited by their reliance on a small number of pixel-level
labeled examples and often suffer from suboptimal perfor-
mance due to imprecise generative masks. While powerful
text-to-image diffusion models have introduced new possi-
bilities for leveraging synthetic data to train models or even
replace real data, existing methods like DiffuMask (Wu et al.
2023b) and DatasetDiffusion (Nguyen et al. 2024) are con-
strained by their dependence on pre-trained diffusion mod-
els and simplistic generation techniques, leading to unstable
performance in more complex scenes.

In this context, synthetic annotated data has shown con-
siderable potential. However, existing dataset generation ap-
proaches face limitations in adaptability and performance
across various perceptual tasks. As highlighted in Figure
1, these methods are often constrained by their reliance on
text-based generation with limited annotation control (Diffu-
Mask, DatasetDM (Wu et al. 2023a), DatasetDiffusion), de-
pendence heavily on pre-trained diffusion models that gener-
ate simplistic scenes, primarily focusing on single instances.
Furthermore, their narrow focus on specific downstream
tasks, such as semantic segmentation (e.g., DiffuMask, Det-
Diffusion (Wang et al. 2024b), DatasetDiffusion), restricts
their broader applicability. The lack of more precise and
controllable generation techniques results in unstable per-
formance and applicability limitation in multi-instance and
multi-category (MIMC) scene generation.

To address these challenges, we introduce FlexDataset, a
novel framework that defines the paradigm of composition-
to-data (C2D) generation. FlexDataset is meticulously de-



Figure 1: Synthetic Data from FlexDataset. FlexDataset provides high-quality, limitless images with perception annotations,
leading to substantial enhancements in various downstream tasks.

signed to produce synthetic datasets with versatile annota-
tions tailored for a wide range of downstream tasks. Un-
like previous text-to-data approaches like DatasetDM, Flex-
Dataset leverages a groundbreaking MIMC C2I framework,
enabling the generation of complex, realistic scenes where
multiple objects coexist and interact within a coherent global
context. This is achieved by encoding pixels, context-aware
categorical embeddings, and the entire image with composi-
tion guidance. Additionally, to reduce computational time,
we introduce the Versatile Annotation Generation (VAG)
Plan A. This approach directly utilizes the rich latent rep-
resentations from the C2I model for VAG using perception
decoders, rather than processing generated image features
through entire perception models. This innovation reduces
annotation synthesis time by nearly fivefold while maintain-
ing high-quality pixel-level annotation synthesis.

In summary, our contributions are four-fold:
• We introduce FlexDataset, a comprehensive framework

that redefines high-fidelity annotated dataset generation
using a composition-guided generative approach. Flex-
Dataset produces unlimited pixel-level synthetic images
with versatile annotations for tasks like salient object de-
tection (SOD), depth estimation, and generic segmenta-
tion, including zero-shot and long-tail settings.

• We propose the Versatile Annotation Generation (VAG)
Plan A, which enhances annotation synthesis speed and
quality by leveraging latent representations from the
MIMC C2I model with optimized perception decoders.
VAG Plan A accelerates synthesis nearly fivefold while
maintaining high quality.

• FlexDataset provides precise control over semantic and
spatial attributes, seamlessly integrating multiple sub-
jects into customized images. It supports adjustments
such as bounding box resizing, repositioning, and cate-
gory alteration, enabling countless scene variations. Us-
ing less than 1% labeled data, it generates extensive syn-
thetic datasets closely resembling real-world MIMC con-
ditions, significantly reducing annotation efforts.

• Experiments show that perception models trained on
FlexDataset’s synthetic data achieve outstanding results

Figure 2: The overall framework of FlexDataset. Users in-
put scene compositions with categories and bounding boxes.
These features generate the Query, Key, and Value for the
MIMC process. Query(MIMC) is then used for versatile an-
notation generation via tuned perception decoders for down-
stream tasks.

across five datasets and six tasks. For example, Flex-
Dataset reduces SOD mean squared error by 20.1% on
the PPM-100 dataset.

Related Work
Composition-guided Image Generation

Composition-guided methods generate images based on lay-
outs that specify the arrangement and attributes of multiple
instances. Unlike traditional text-to-image (T2I) methods,
which struggle with controlling complex scenes with multi-
ple objects, some diffusion models [(Li et al. 2023b), (Wang
et al. 2023), (Zheng et al. 2023)] allow for composition guid-
ance. For example, LayoutDiffusion (Zheng et al. 2023) and
GLIGEN (Li et al. 2023b) input bounding box positions and
labels into the diffusion model to learn layout information.
DenseDiffusion (Kim et al. 2023) modulates attention maps
during inference without additional training. Instance Dif-
fusion (Wang et al. 2024a) and MIGC (Zhou et al. 2024)
extend layout-conditioned diffusion to generate multiple ob-
jects with precise quantities.



Figure 3: Model architecture of MIMCSC. (a) Encoding the Entire Image: The image is encoded into feature maps, normal-
ized, convolved, and flattened to generate Query(MIMC). (b) Encoding Each Pixel: Each pixel is projected into a matrix based
on its corresponding instance bounding boxes and contribute to the entire matrix of the image as Key(MIMC). (c) Encoding the
Context-aware Categorical Embedding: The image composition and category information are projected, combined, normalized,
and convolved to form Value(MIMC). (d) These encoded features undergo Linear Transformer Encoding (LTE) and denoising
to synthetic scenes while Query(MIMC) is utilized for versatile annotation generation. The dashed lines with arrow represent
linear projection and reshaping.

Synthetic Data for Perceptual Annotation
Generation
Synthetic data generated by GANs (Goodfellow et al. 2020;
Ling et al. 2021) and diffusion models (Sohl-Dickstein
et al. 2015) offer flexibility for a range of tasks and open-
world scenes. DiffuMask (Wu et al. 2023b), for instance,
uses cross-attention maps from Stable Diffusion to produce
synthetic images and semantic masks. Composition-based
methods like GeoDiffusion (Chen et al. 2023), MagicDrive
(Gao et al. 2023), and TrackDiffusion (Li et al. 2023a) en-
hance object detection by generating 3D-aided masks. How-
ever, these methods do not optimize generation for spe-
cific detectors. Other works convert generators into percep-
tive models by extracting annotations from generative fea-
tures, such as DatasetDM (Wu et al. 2023a), DetDiffusion
(Wang et al. 2024b), and Dataset Diffusion (Nguyen et al.
2024). These techniques, while capable of producing anno-
tated data, are limited by reliance on text-based generation,
dependency on pre-trained diffusion models that generate
simplistic scenes, and a narrow focus on specific tasks. In
contrast, FlexDataset employs complex image compositions
rather than text prompts, enabling the coexistence and inter-
action of multiple objects, making it more suitable for di-
verse perceptual tasks in real-world scenarios.

Methodology
We pioneer an innovative paradigm, composition-to-data
(C2D) generation, enhancing composition-guided diffusion
models through training on image-composition pairs. Our
FlexDataset hinges on two key insights: [Sustainable] By
leveraging less than 1% of an existing labeled dataset and
utilizing enhanced yet lightweight perception decoders tai-
lored to various downstream applications to interpret the dif-
fusion latent space, we can generate infinite and diverse an-

notated data. This allows state-of-the-art methods to train
on our synthetic datasets, significantly reducing labor costs;
[MIMC Crafting] FlexDataset enables the creation of com-
plex and realistic scenes. It efficiently generates customized
images through a sophisticated C2I process, providing pre-
cise semantic and positional control over multi-category in-
stances. Figure 2 demonstrates the overall framework.

MIMC Composition-guided Scene Generation
(MIMCSG)
In multi-instance and multi-category (MIMC) scene gener-
ation, users specify the composition of N instances within
the image through their layout bounding boxes B(IC) =

{b1, . . . ,bN} ∈ RN×4, where bi = (xi1, yi1, xi2, yi2)
T ,

IC representing the context of ’Image Composition’, and the
corresponding categories K = {k1, . . . ,kN}T , where ki ∈
distinct category set {dk1, dk2, . . . , dkND

}. Note that b1 is
designed to be (0, 0, 1, 1)T representing the entire image
coverage for further calculation. The pipeline then generates
an image where each instance adheres to the user-defined
category and ensures a coherent global scene alignment.

Unified Content-aware Embedding for Image Compo-
sition. To achieve a unified representation that is both
content-aware and position-aware for the composition, we
utilize projection matrices PB ∈ R4×dIC , PK ∈ R1×dIC to
map B(IC) and K into a unified space, where dIC is the di-
mension of the unified embedding. The corresponding posi-
tional encoded embedding is denoted as B(IC) = B(IC) ·PB
while the content-aware encoded embedding is denoted as
K = K · PK, where B(IC), K ∈ RN×dIC . Define the uni-
fied embedding IC as follows:

IC = B(IC) +K, (1)

where IC, B(IC), K ∈ RN×dIC . IC reflects the alignment
and integration of spatial and categorical information within



the image composition.

Context-aware Embedding with Intra-attention. Al-
though IC incorporates content-aware and position-aware
embedding, it lacks inter-instance dependencies and rela-
tionships, limiting the understanding of the scene, espe-
cially when objects intersect or obscure each other. To ad-
dress this, we integrate intra-attention into IC to form a
context-aware representation. To effectively fuse the IC em-
bedding, we employ a Linear Transformer Encoder (LTE)
(Katharopoulos et al. 2020) utilizing multiple layers of
linearized self-attention, with output of each layer then
undergoing a position-wise feed-forward neural network
FFN(·) : FFN(·) = (ReLU(·)W1 + b1)W2 + b2, where
W1, W2 are weight matrices and b1, b2 are biases. The final
content-aware, position-aware and context-aware embed-
ding is the output of LTE(IC), denoted as IC⋆ ∈ RN×dIC .
LTE captures the intra-interaction within the spatial and cat-
egorical information for all instances in the composition,
with computational complexity decreased to a linear scale.

MIMC Query, Key & Value Construction. Evidently,
the initial formulations highlight processing the seman-
tic and spatial MIMC information both independently and
through cross-reference. As illustrated in Figure 3, we then
construct the final Q, K, V through three encoding ways uti-
lizing our formulations:

Encoding the entire image: Denote FI ∈ RH×W×dI

as the feature map of the entire image. Let IC⋆
1 ∈ R1×dIC

denote the first row of IC⋆, semantically representing the
background coverage, the projected embedding is given by
IC⋆

1 · PIC→I ∈ R1×dI , where PIC→I presents the pro-
jection matrix. Then we broadcast the projected embedding
to the feature map to get F⋆

I . The output of the process of
encoding the entire image, denoted as EI, is calculated as
EI = Conv(Norm(F⋆

I)). We further investigate the impact
of incorporating text prompts in dataset synthesis. The corre-
sponding embeddings are concatenated with F⋆

I . A detailed
analysis is provided in the ablation study.

Encoding each pixel: Each pixel (x, y) belongs to a set of
instances including background, thus associated with a ma-
trix of size 4 × d(x, y), where 4 represents the dimensions
of the bounding box for instances, and d(x, y) is the number
of instances the pixel belongs to. Each pixel can be trans-
formed into a matrix of size 4×dpixel with projection matrix
Ppixel ∈ Rd(x,y)×dpixel . Given an image I of size M ×N , we
obtain a final matrix of size (NP , 4×dpixel), denoted as EP,
where NP = M × N . Unlike the structural patch encoded
in LayoutDiffusion (Zheng et al. 2023), our encoding offers
more precise pixel-wise representation.

Encoding the context-aware categorical em-
bedding: We obtain CCE as following: CCE =
Conv(IC⋆ + Norm(K)). The key and value embed-
dings are derived from the content-aware embedding K,
emphasizing categorical information, and the fused image
composition embedding IC⋆, capturing intra-interactions
among instances. Averaging K and IC⋆ yields a repre-
sentation that integrates both general layout and specific
characteristics of instances.

Inspire by (Zhou et al. 2024), to confine the context of
each instance to a designated spatial domain, we propose an
enhancement to the conventional attention mask, denoted as
M. The adjustment involves the bilateral neglection of to-
kens within both the query and key matrices, applied specif-
ically for the ith instance as follows:

Mi(x, y) =

{
1, if xi1 ≤ x ≤ xi2 and yi1 ≤ y ≤ yi2,

−inf, otherwise,
(2)

where the background mask M1 is defined as the area of
the entire image excluding the union of all instance masks:
M1(x, y) = 1 − min

(
1,
∑N

i=2 Mi(x, y)
)

. The final linear
attention is derived through:

Afinal =
(
ϕ(Query(MIMC))ϕ(Key(MIMC))

T ⊙ M
)

Value(MIMC)

(3)

Herein, the combined mask tensor M is formulated by
stacking the individual masks along the third dimension,
represents the amalgamation of all subject-specific masks:
M = [M1,M2, . . . ,MN ]; ⊙ denotes the Hadamard prod-
uct; ϕ(·) = elu(·)+1, and elu(·) denotes the exponential lin-
ear unit (Clevert, Unterthiner, and Hochreiter 2016) activa-
tion function; Query(MIMC), Key(MIMC), Value(MIMC)
are obtained from EI, CCE, and EP, respectively, through
linear projection and reshaping. The attention mechanism
ensures that each pixel only attends to others within the
same instance region. This maintains instance-specific fea-
tures and avoids attribute leakage between instances. By in-
tegrating these masks into the linear attention framework,
we ensure that the attention mechanism respects the instance
boundaries, thereby preserving the instance-specific features
and improving the overall quality of the generated images.
This comprehensive approach is crucial for generating co-
herent and realistic multi-instance scenes. Query(MIMC),
Key(MIMC), and Value(MIMC) then undergo LTE fol-
lowed by denoising and image rendering in align with Lay-
outDiffusion (Zheng et al. 2023). For the other bypassing,
Query(MIMC) serves as a perception task query for versa-
tile annotation generation.

Our approach grants users granular control over individ-
ual objects within the generated image, facilitating precise
manipulation of each object. By defining the composition,
the user can ensure that each object is positioned and sized
according to customization, thus enhancing the accuracy and
relevance of the generated image.

Versatile Annotation Generation (VAG)
It is crucial to explore how the latent representation
Query(MIMC) can be translated into perception annota-
tions across various downstream tasks. The primary dis-
tinction in our VAG approach lies in directly passing
Query(MIMC) through perception decoders (denoted as
VAG Plan A), rather than using synthetic image features
that must go through a complete pre-trained perception
model—comprising both encoder and decoder—as in pre-
vious approaches (denoted as VAG Plan B) like DiffuMask
(Wu et al. 2023b). Drawing inspiration from previous works
on perception models (Pang et al. 2020; Yang et al. 2024;



Zou et al. 2024), we develop a pipeline for multi-task an-
notation generation that relies solely on the perception de-
coders from these methods. Specifically, in (Pang et al.
2020), the image features must undergo five-layer VGG-16
blocks (Simonyan and Zisserman 2015) as the encoder, fol-
lowed by the aggregation interaction, self-interaction, and
fusion unit modules to generate the SOD annotation. Our
optimized method simplifies this process by directly feed-
ing Query(MIMC) into a two-layer aggregation interaction
and subsequent modules, bypassing the need for a full en-
coder stack. Similarly, for depth estimation, we eliminate the
necessity of processing generated image features through the
Depth-Anything shared encoder (Yang et al. 2024). Instead,
Query(MIMC) is fed directly into the depth decoder. Like-
wise, for segmentation, Query(MIMC) is used directly in
the self- and cross-attention modules of SEEM (Zou et al.
2024) to generate segmentation annotations, omitting the
step of processing generated image features through the im-
age encoder. Ultimately, we prioritize using perception de-
coders to translate latent information from the C2I process
over processing entire models with generated images since
VAG Plan A reduces annotation synthesis time by nearly 5-
fold while maintaining high quality, as proved in our abla-
tion studies. Detailed comparisons between entire percep-
tion models and perception decoders are in the appendix.

Optimization Objectives
Composition-Conditional Image Generation Loss for
MIMCSG. To support composition-conditioned image
generation, we adopt a technique called classifier-free guid-
ance (Zheng et al. 2023). This method interpolates be-
tween the predictions of a diffusion model with and without
condition input. We first construct a padding composition
Com.ϕ = {insCom., ins1, · · · , insN}. During training, the
composition condition Com. of the diffusion model is re-
placed with Com.ϕ with a fixed probability. Define a pixel
as px0 ∼ q(px0), where q(·) denotes the Markovian noising
process, we can obtain the noised samples from px1 to pxT ,
where T denotes the maximum steps of q(·). The training
loss is calculated by:

L = Et∼[1,T ],px0∼q(px0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(pxt, t)∥2

]
(4)

When sampling, the composition-conditional image is gen-
erated using:

ϵ̂θ(pxt, t | Com.) = (1−s)·ϵθ(pxt, t | Com.ϕ)+s·ϵθ(pxt, t | Com.),
(5)

where s scales the gap between ϵθ(pxt, t | Com.ϕ) and
ϵθ(pxt, t | Com.) to enhance conditional guidance.

Perception Decoder Tuning for VAG. To utilize the per-
ception decoders, we need to train the decoders in VAG Plan
A using annotations generated from VAG Plan B. The loss
between the two sets of generated annotations fine-tunes
the decoders, enhancing their adaptability and precision for
downstream tasks.

Target Baseline Training Loss on Synthetic Dataset.
We train various perception models as baselines includ-
ing Mask2Former (Cheng et al. 2022), MODNet (Ke et al.

2022), and DepthFormer (Li et al. 2022) for different down-
stream tasks using synthetic datasets generated by Flex-
Dataset. The loss functions of these models are based on the
specific perception tasks.

By incorporating these optimization objectives, we en-
hance FlexDataset for effective high-fidelity MIMC image
generation and accurate annotaion synthesis, improving the
performance of baselines across various downstream tasks
by training on our synthetic dataset.

Experiments
Dataset
For training C2I model and perception decoders, following
the methodology of LayoutDiffusion (Zheng et al. 2023),
we employ the COCO 2017 Stuff Segmentation Challenge
subset. Each image contains bounding boxes and pixel-level
segmentation masks for 80 categories of things and 91 cat-
egories of stuff. From these, we select images that feature
between 3 to 8 objects, each covering more than 2% of the
image area and not belonging to a crowd.

Implementation details
Reverse Tuning for MIMCSG. In MIMCSG process, we
begin by synthesizing images with reverse tuning technique,
that leverages the real bounding boxes and category la-
bels of a tiny sub-dataset (e.g.:100,400,800 images) to train
generative models. As mentioned, we tune the C2I model
with composition-conditional image generation loss. For all
tasks, we train FlexDataset for approximately 200 iteration
using images of size 512×512 on a single Tesla V100 GPU.
We use the optimizer from (Loshchilov and Hutter 2017)
with a learning rate of 0.0002.

Downstream Task Evaluation To comprehensively eval-
uate the generative image of FlexDataset, we conduct exper-
iments across six supported downstream tasks. The corre-
sponding annotations are generated with tuned perception
decoders. We primarily benchmark our work against the
state-of-the art text-to-data method, DatasetDM (Wu et al.
2023a). Salient Object Detection. We evaluate FlexDataset
on the PPM-100 benchmark (Ke et al. 2022) with MODNet
(Ke et al. 2022)) serving as the SOD baseline to assess the
effectiveness of our generated data. FlexDataset uses 80k
synthetic images based on 400 real images. The evaluation
metrics are Mean Squared Error (MSE) and Mean Absolute
Deviation (MAD). In alignment with DatasetDM (Wu et al.
2023a), we retained the same settings for other downstream
tasks including Semantic Segmentation, Instance Segmenta-
tion, Depth Estimation, Zero-Shot Semantic Segmentation,
and Long-tail Semantic Segmentation to ensure a fair com-
parison. Further details can be found in the appendix.

Main Results
Table 1 presents a fundamental comparison across the four
chosen downstream tasks. Additional experiments and re-
sults are detailed in Tables 3, 4, 5, and further elaborated in
the appendix.
Salient Object Detection. Table 2 presents the results for



Figure 4: Examples of annotated data generated from FlexDataset with various MIMC configurations. Text prompts are
created from generated scene using ControlCap (Zhao et al. 2024) for a fair comparison with DatasetDM. Red: missed classes;
Yellow boxes : blurred or overflowed classes.

VOC (Semantic Seg.)/% COCO2017 (Instance Seg.)/% NYU Depth V2 (Depth Est.) PPM-100 (Salient Obj. Det.)
method # real # synth. mIoU # real # synth. AP # real # synth. REL ↓ # real # synth. MSE ↓
Baseline 100 - 65.2 400 - 14.4 50 - 0.31 full - 0.44
DiffuMask - 60k 70.6 - - - - - - - - -
DatasetDiffusion - 40k 60.2 - - - - - - - - -
DatasetDM 100 40k 78.5 400 80k 26.5 50 35k 0.21 - - -
FlexDataset 100 40k 81.6 400 80k 31.4 50 35k 0.17 - 40k 0.24

Table 1: Downstream Tasks. ’real’ and ’synth’ represent real and synthetic images, respectively. The baseline backbones for
the four tasks are ’Swin-B’, ’Swin-B’, and ’Swin-L’. DatasetDiffusion employs ResNet50 as its backbone.

Figure 5: Annotation Prediction Results on NYU Depth
V2. FlexDataset can enhance the performance of the target-
ing perception model (e.g. DepthFormer (Li et al. 2022)).

salient object detection on the PPM-100 dataset. Flex-
Dataset outperforms other methods, achieving the lowest
MSE of 0.24 and MAD of 0.79 with 80,000 synthetic im-
ages (R:400), while previous methods using 400 real im-
ages show higher MSE and MAD values. Instance Segmen-
tation. Table 3 presents three training settings with varia-
tions in backbone and training images. With the R50 back-
bone and 400 real images, FlexDataset achieves 17.7% AP
compared to DatasetDM’s 14.8%. With 80,000 synthetic im-

method backbone # real image # synthetic image MSE↓ MAD↓
LFM R50 400 - 0.94 1.58
HAtt R50 400 - 0.67 1.37
BSHM R50 400 - 0.63 1.14
MODNet R50 400 - 0.44 0.86
FlexDataset R50 - 80k (R:400) 0.24 0.79

Table 2: Salient Object Dection on PPM-100 ’R:’ repre-
sents the training data sourced from real datasets.

ages, FlexDataset improves to 19.4%. Using the Swin-B
backbone, FlexDataset reaches 31.4% AP with 800 real im-
ages, compared to DatasetDM’s 26.5%. Semantic Segmen-
tation. From Table 4, with 100 real images (5 per class),
FlexDataset achieves 76.4% mIoU, a 2.7% improvement
over DatasetDM. Using the Swin-B backbone, FlexDataset
reaches 88.1% in full training, outperforming DatasetDM.

Depth Estimation. In Table 1, a comparison is made be-
tween synthetic and real data on the NYU Depth V2 dataset.



method backbone # real /# synth AP APS APM APL

Mask2Former R50 400 / - 4.4 1.1 3.3 12.1
DatasetDM R50 - / 80k (R:400) 12.2 1.6 11.3 30.9
FlexDataset R50 - / 80k (R:400) 17.7 8.5 17.3 36.7
DatasetDM R50 400 / 80k (R:400) 14.8 2.3 15.1 36.0
FlexDataset R50 400 / 80k (R:400) 19.4 6.3 17.2 39.4
Mask2Former Swin-B 400 / - 11.3 3.2 10.1 27.1
DatasetDM Swin-B - / 80k (R:400) 17.6 3.4 17.8 39.5
FlexDataset Swin-B - / 80k (R:400) 27.3 10.5 21.6 45.3
DatasetDM Swin-B 400 / 80k (R:400) 23.3 7.7 26.1 48.7
FlexDataset Swin-B 400 / 80k (R:400) 30.4 12.9 32.0 53.2
Mask2Former Swin-B 800 / - 14.4 5.6 15.7 29.2
DatasetDM Swin-B 800 / 80k (R:800) 26.5 7.7 29.8 53.3
FlexDataset Swin-B 800 / 80k (R:800) 31.4 13.4 33.7 57.3

Table 3: Instance segmentation results on COCO
val2017. ’R:’ indicates the real data utilized for training.

Sampled Classes
method backbone # real / # synth Bird Cat Car mIoU
Mask2Former R50 100 / - 54.8 53.3 66.8 43.4
DiffuMask R50 - / 60k 86.7 79.3 74.2 57.4
DatasetDiffusion R50 - / 40k (R:100) - - - 60.2
DatasetDM R50 - / 40k (R:100) 84.7 74.4 79.2 60.3
FlexDataset R50 - / 40k (R:100) 89.2 79.9 85.3 65.5
DatasetDM R50 100 / 40k (R:100) 81.7 82.3 77.9 66.1
FlexDataset R50 100 / 40k (R:100) 84.9 85.8 81.2 70.9
Mask2Former Swin-B 100 / - 54.4 68.3 71.8 65.2
DiffuMask Swin-B - / 60k 92.9 92.5 82.9 70.6
DatasetDM Swin-B - / 40k (R:100) 93.4 94.5 78.8 73.7
FlexDataset Swin-B - / 40k (R:100) 94.7 96.2 85.8 76.4
DatasetDM Swin-B 100 / 40k (R:100) 86.7 93.8 88.3 78.5
FlexDataset Swin-B 100 / 40k (R:100) 87.4 95.0 89.6 81.6
Mask2Former Swin-B full / - 93.7 96.5 88.6 84.3
DiffuMask Swin-B 5k / 60k 94.4 96.6 92.9 84.9
DatasetDM Swin-B full / 40k (R:100) 93.9 97.6 89.4 85.4
FlexDataset Swin-B full / 40k (R:100) 94.2 97.8 93.5 88.1

Table 4: Semantic segmentation results on VOC 2012.
’R:’ indicates the real data utilized for training.

Figure 6: VAG performance (mIoU%) on semantic seg-
mentation under different conditions. The top, middle,
and bottom line charts correspond to ablation studies 2-4,
respectively.

Notably, FlexDataset, when trained on a merged dataset,
outperforms DatasetDM with a improvement of 0.04. Zero
Shot and Long-tail Segmentation. Table 5 presents the re-
sults for zero-shot and long-tail segmentation. FlexDataset
effectively mitigates the challenges of long-tail distribution
by generating substantial data for rare classes, leading to an
mIoU improvement of up to 2.7% over DatasetDM.

Ablation Study
Annotation Synthesis Technique: Using tuned perception
decoders for annotation generation (VAG Plan A) is prefer-
able due to their substantial computational efficiency. Ta-
ble 6 shows no notable difference in annotation genera-

Zero-Shot Configuration Long-tail Configuration
method seen unseen harm. head tail mIoU/%
Baseline 61.3 10.7 18.3 61.2 44.1 52.6
Li et al. 62.8 50.0 55.7 - - -

DiffuMask 71.4 65.0 68.1 - - -
DatasetDM 78.8 60.5 68.4 73.1 66.4 70.0
FlexDataset 83.6 77.5 80.4 75.2 70.3 72.7

Table 5: Zero Shot and Long-tail Segmentation on VOC
2012. For Zero Shot, consistent with priors (Li et al. 2023c;
Wu et al. 2023b,a), FlexDataset is trained using only 15
seen categories and evaluated across all 20 categories. In the
Long-tail configuration, the 20 categories are divided into
head classes (10 classes, 20 images per class) and tail classes
(10 classes, 2 images per class).

VAG Method Sem. Seg. % ST (h) Depth Est. % ST (h)
Entire PM 81.1 257.3 0.20 92.3
Tuned PD 81.6 138.4 0.17 18.6

Table 6: VAG performance of ablation study 1. Entire Per-
ception Models (PM) vs. Tuned Perception Decoders (PD).
‘Sem. Seg.’ and ’Est.’ denote Semantic Segmentation and
Estimation, respectively. ST (h) represents synthesis time in
hours.

tion quality between the two methods. However, the lat-
ter greatly enhances computational efficiency five times;
Proportion of Single-Category and Multi-Category In-
stances in Synthetic Images: We examine how different
proportions of single-category and multi-category objects
in synthetic images affect training performance. Figure 6
shows that MIMC configurations maintain robust perfor-
mance, highlighting our method’s effectiveness. Balancing
these proportions ensures that FlexDataset closely mirrors
real-world scenarios, enhancing its applicability; Bounding
Box Offset: We introduced various levels of bounding box
offsets in synthetic images. Figure 6 shows that slight offsets
enhance generation performance, indicating improved gen-
eralization and robustness to real-world variations in image
compositions. Impact of Text Prompt Supervision: We
investigated whether incorporating text prompts enhances
mask generation. A CLIP text encoder (Radford et al. 2021)
projects category prompts (e.g., car, tree) into sequence em-
beddings, which are concatenated with F⋆

I . Location tokens
are added to CLIP, initialized with 2D sine-cosine embed-
dings. Figure 6 shows a 0.6% improvement in generation.

Conclusion
We have presented FlexDataset, a framework for generating
high-fidelity synthetic datasets tailored to diverse perceptual
tasks such as salient object detection, depth estimation, and
generic segmentation. FlexDataset pioneers a composition-
to-data (C2D) generation paradigm, enabling the creation of
complex, multi-instance and multi-category (MIMC) scenes
that closely resemble real-world environments. Our Versa-
tile Annotation Generation (VAG) Plan A enhances annota-
tion synthesis efficiency by nearly five-fold. Comprehensive
experiments demonstrate that FlexDataset surpasses existing
text-to-data methods, underscoring its potential to transform
dataset creation.
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A. Linearized Attention in MIMCSG
Multi-head attention (Vaswani et al. 2017) usually calcu-
lates attention using the dot product of Q and K, leading to
quadratic computational costs as the input sequence length
increases. To address this issue, we adopt Linear Transform-
ers as proposed in (Katharopoulos et al. 2020) that express
self-attention as a linear dot product of kernel feature maps
as follows:

Attention(ϕ(Q), ϕ(K), ϕ(V )) = ϕ(Q)
(
ϕ(K)TV

)
, (1)

where ϕ(·) = elu(·) + 1, and elu(·) denotes the exponen-
tial linear unit (Clevert, Unterthiner, and Hochreiter 2016)
activation function. Since the number of channels is much
smaller than the input sequence length, the computational
complexity is decreased to a linear scale. This reduction al-
lows us to efficiently compute attention for image compo-
sition embedding where N ≪ dimension of the embedding
space. In MIMC Composition-guided scene generation, we
utilized linear transformers in the Context-aware Embedding
with Intra-attention process, during the final attention com-
putation, and prior to image denoising. The primary goal
was to optimize computational efficiency.

B. More Details for VAG Plan A and VAG Plan B
B.1 Salient Object Detection (SOD)
In the VAG Plan B (Figure 1-(a)), for the input, namely
the generated image from MIMCSG, we initially align its
dimensions with those of the EncoderSOD input through
a 2D convolution, converting it to a dimension of (320 ×
320 × dEncoder0SOD

). We then exploit VGG-16 (Simonyan

and Zisserman 2015) blocks
{
Ei

}1

i=0
as the EncoderSOD

to extract multi-level features. Following the method out-
lined in (Pang et al. 2020), the extracted features are further
processed by 2-layer AIMs that utilize adjacent layers as
auxiliary inputs. This configuration effectively enhances the
resolution support. After this Aggregation Interaction step,
the outputs are intricately combined by 2-layer SIMs for Self
Interaction and Fusion Units (FUs) to generate the mask pre-
diction. Notably, the information integrated by FU1 is fed
back to the shallower layer to adaptively extract multi-scale
information. To supervise the training stage, we employ a
consistency-enhanced loss as an auxiliary loss.

In contrast, the VAG Plan A (Figure 2-(a)) simplifies this
approach by utilizing only the latent representation, i.e.,
Query(MIMC), for feature extraction and interaction. Our
optimized method simplifies this process by directly feed-
ing Query(MIMC) into a two-layer aggregation interac-
tion and subsequent modules, bypassing the need for a full
encoder stack. This limited use of encoder layers is inten-
tional, as the Query(MIMC) already contains substantial
perception and abstraction information.

B.2 Depth Estimation
In the VAG Plan B (Figure 1-(b)), the process for Zero-
shot Depth Estimation begins by aligning the input dimen-
sions using a 2D convolution, making it compatible with the
Monocular Depth Estimation encoder (Bhoi 2019). Follow-
ing the detailed training pipeline from (Yang et al. 2024), a
shared encoder — typically a ViT-L encoder — processes
the image flows, incorporating strong perturbations to de-
rive a rich feature map. This map is further enriched with
a semantic preservation module before entering the depth
decoder, equipping the model with semantic priors. The
semantic-aware representation is derived from a frozen DI-
NOv2 model (Oquab et al. 2024), as suggested in Depth-
Anything (Yang et al. 2024). In line with MiDaS v3.1 (Birkl,
Wofk, and Müller 2023; Ranftl et al. 2020), we utilize the
DPT (Ranftl, Bochkovskiy, and Koltun 2021) decoder for
depth regression. All labeled datasets are combined without
re-sampling, simplifying the integration process.

On the other hand, for VAG Plan A (Figure 2-(b)), we
eliminate the necessity of processing generated image fea-
tures through the Depth-Anything’s shared encoder (Yang
et al. 2024). Instead, Query(MIMC) is fed directly into the
depth decoder.

B.3 Segmentation
Inspired by SEEM (Zou et al. 2024), which is capable of
generalizing to unseen user intents by learning to compose
multimodal information into a unified space, we incorporate
semantics-related queries during the training stage to facil-
itate the open-vocabulary segmentation task. Visually, in
VAG Plan A (Figure 3-(c)’), the Query(MIMC) undergoes
a 2D convolution to align its dimensions with the features re-
quired to enter subsequent modules, generating correspond-
ing latent information denoted as FI (Seg). On the textual



Figure 1: Architecture of VAG Plan B.

Figure 2: Architecture of VAG Plan A.

side, given the category names {text(k1), . . . , text(kN )}T
(e.g., pole, bird), we utilize UniCL (Yang et al. 2022b) to
encode them into the embedding space as text features, de-
noted as FT (Seg). The SEEM-decoder, namely the enhanced
X-Decoder (Zou et al. 2024), predicts the annotations and
semantic categories based on their corresponding embed-
dings eb(M), eb(C) as follows:

eb(M), eb(C) = X −Decoder(Q(Seg);FT (Seg)|FI (Seg)),
(2)

where Q(Seg) represents the learnable query. The annota-
tions and categories are generated by their respective predic-
tors. It is important to note that at inference time, the learn-
able queries interact freely with all prompt embeddings,
thereby enabling zero-shot composition. Thus, our pipeline
can generate an open-vocabulary annotation by incorporat-
ing a new class name.

In VAG Plan A (Figure 2-(c)), for other generic segmen-
tation tasks, Query(MIMC) is used directly in the self- and

cross-attention modules of SEEM to generate segmentation
annotations, omitting the step of processing generated image
features through the image encoder, as done in VAG Plan B
(Figure 1-(c)). In VAG Plan B, FocalT (Yang et al. 2022a) is
used as the image encoder, similar to the approach in SEEM.

C. More Implementation Details
C.1. More Dataset Details
The Photographic Portrait Matting benchmark (PPM-100)
(Ke et al. 2022) includes finely annotated portrait images
with diverse backgrounds. To ensure diversity, the sample
selection for PPM-100 considered several factors: (1) inclu-
sion of the entire portrait body; (2) whether the background
is blurred; and (3) whether the person is holding additional
objects. Small objects held by the subject are treated as part
of the foreground, aligning with practical applications. We
also incorporated the DUTS dataset (Wang et al. 2017) into
the full data. The DUTS dataset, which comprises 10,553



Figure 3: VAG Plan A - Open Vocabulary Segmentation.

Downstream Task Dataset Full Real Data Used for FlexDataset # Synthetic Image
Salient Object Detection PPM-100 and DUTS 10.6k 400 (3.7%) 80k
Instance Segmentation COCO 2017 118.3k 400 (0.3%) 80k
Semantic Segmentation VOC 2012 10.6k 100 (0.87%) 40k
Zero-Shot Segmentation VOC 2012 10.6k 450 (3.9%) 40k
Depth Estimation NYU Depth V2 24.2k 50 (0.2%) 35k

Table 1: Summary of datasets utilized in FlexDataset. The table lists the number of real images employed in FlexDataset, along
with their percentage in relation to the entire dataset. Additionally, it specifies the quantity of synthetic images generated for
each task.

training images, is currently the largest available dataset for
salient object detection. Both the training and test sets con-
tain complex scenes. For evaluation, we selected a total of
400 images, comprising the entire PPM-100 set (100 im-
ages) along with an additional 300 images randomly sam-
pled from the DUTS dataset, which were utilized for Flex-
Dataset.

Pascal-VOC 2012 (Everingham et al. 2010b) is a well-
established dataset in the field of computer vision, particu-
larly renowned for its application in semantic segmentation
tasks. It encompasses a diverse set of 20 object classes, in-
cluding animals, vehicles, and furniture, across thousands of
annotated images.

COCO 2017 (Common Objects in Context) (Lin et al.
2014) is widely recognized in the computer vision commu-
nity for its extensive application in object detection, segmen-
tation, and human pose estimation tasks. This dataset com-
prises over 200,000 labeled images, featuring approximately
1.5 million object instances across 80 different categories.

In the domain of indoor scene understanding, the NYU
Depth V2 (Silberman et al. 2012) dataset stands out, specifi-
cally tailored for depth estimation tasks. It includes 1,449 la-
beled images and 407,024 unlabeled frames, collected from
464 varied indoor scenes.

C.2 Details for Target Baselines Trained on our Syn-
thetic Dataset
The benchmark for downstream tasks was established using
different models across various segmentation and estimation
tasks.

For Salient Object Detection, we utilized MODNet (Ke
et al. 2022). The official code was used, preserving all net-
work configurations, loss functions, and settings as defined
in the original implementation. The evaluation was con-
ducted under two different scenarios: training solely on real
data and training exclusively on synthetic data.

For Semantic/Instance Segmentation, Mask2former
(Cheng et al. 2022) was utilized as the baseline to com-
pare synthetic and real data. The official code was employed,
maintaining all original network settings, loss functions, and
configurations. The evaluation involved three distinct set-
tings: training with purely real data, training with purely
synthetic data, and joint training using both synthetic and
real data.

In the case of Open-Vocabulary Semantic Segmentation,
Mask2former (Cheng et al. 2022) was also used as the base-
line. FlexDataset was trained on 15 seen categories, gen-
erating 40,000 synthetic images for 20 categories. These
synthetic images were then used to train the Mask2former
model, with performance evaluated on the 20 categories of
VOC 2012.

For Depth Estimation, DepthFormer (Li et al. 2022) was
adopted as the baseline to evaluate the proposed method. All
network settings, loss functions, configurations, and training
strategies were adhered to as outlined in the original imple-
mentation.

C.3 Other Settings for Evaluation on Downstream
Tasks
Semantic Segmentation. We utilized Pascal-VOC 2012 (Ev-
eringham et al. 2010a) (20 classes) and Cityscapes (Cordts
et al. 2016) (19 classes), two well-established benchmarks,
to conduct our evaluation. For each class in both datasets, we
generated 2k synthetic images, resulting in a total of 40k im-
ages for Pascal-VOC 2012 and 38k images for Cityscapes.
These synthetic datasets were then used to train the segmen-
tation model Mask2Former (Cheng et al. 2022), and the per-
formance was compared against real data in a limited dataset
setting (approximately 100 images).

Instance Segmentation. Using the COCO2017 (Lin
et al. 2014) benchmark, we generated 1k synthetic im-
ages per class, culminating in 80k images overall. The



Zero-Shot Segmentation Long-Tail Segmentation
Seen Class Unseen Class Head Class Tail Class

aeroplane (0), bicycle (1), bird (2),
boat (3), bottle (4), bus (5), car (6),
cat (7), chair (8), cow (9) , din-
ingtable (10), dog (11), horse (12),
motorbike (13), person (14)

potted plant (15),
sheep (16), sofa (17),
train (18), tvmonitor
(19)

aeroplane (0), bicycle (1),
bird (2), boat (3), bottle (4),
bus (5), car (6), cat (7),
chair (8), cow (9)

diningtable (10), dog (11),
horse (12), motorbike (13),
person (14), potted plant
(15), sheep (16), sofa (17),
train (18), tvmonitor (19)

Table 2: Details for Zero-Shot and Long-tail Segmentation on VOC 2012 (Everingham et al. 2010a).

SOD Semantic Seg. Instance Seg. Depth Est.
# Training Samples 2k 2.5k 2.5k 1.5k
Training Time (h) 3.6 6.8 7.9 5.4

Table 3: Details for perception decoder training in VAG Plan A. During the training process, the pre-trained entire perception
models from VAG Plan B are utilized to generate perceptual annotations on a small portion of synthetic images created by C2I
models, which serve as the ground truth annotations. We found that selecting a range of 1.5k to 2.5k synthetic images along
with their corresponding annotations is sufficient to train highly effective perception decoders, given their relatively lightweight
architecture. ’Seg.’ and ’Est.’ stand for Segmentation and Estimation, respectively. ’h’ denotes hour.

Mask2Former (Cheng et al. 2022) model served as the base-
line for evaluating the synthetic dataset. We focused solely
on class-agnostic performance, treating all 80 classes as a
single category.

Depth Estimation. For NYU Depth V2 (Silberman et al.
2012), we synthesized a total of 80k images and evaluated
the data using Depthformer (Li et al. 2022)1.

Zero-Shot Semantic Segmentation. Following the ap-
proach of Li et al. (Li et al. 2023), we used Pascal-VOC
2012 (Everingham et al. 2010a) (20 classes) to conduct the
evaluation. FlexDataset was trained with only 15 seen cat-
egories, each represented by 30 real images, and a total of
40k synthetic images were generated for the 20 categories.

Long-tail Semantic Segmentation. The categories in VOC
2012 were divided into head classes (20 images per class)
and tail classes (2 images per class). FlexDataset was then
trained on this data, and additional synthetic data was gen-
erated.

Table 1 offers a detailed comparison of the amounts of
real and synthetic data employed in training across vari-
ous downstream tasks. Interestingly, aside from the seen
classes in the zero-shot segmentation scenario and SOD,
FlexDataset requires less than 1% of the total real data for
training. This approach not only enhances data efficiency but
also has the potential to lower the costs associated with im-
plementing perception algorithms.

C.4 Class Split for Zero-Shot and Long-Tail Seg-
mentation
Table 2 offers a detailed summary of the class allocation in
both zero-shot and long-tail settings. The classification of
zero-shot categories and the structure of the long-tail data
distribution align with the methodologies employed in ear-
lier research (Bucher et al. 2019; Wu et al. 2023b; Li et al.
2023; Wu et al. 2023a).

1https://github.com/zhyever/Monocular-Depth-Estimation-
Toolbox

C.5 Training Details for Perception Decoders in
VAG Plan A
We have mentioned that the time spent on tuning the percep-
tion decoder is minimal compared to the subsequent time re-
quired for generating large volumes of annotation data. Ad-
ditionally, in Ablation Study 1, we have demonstrated that
for VAG, using the tuned perception decoders in VAG Plan
A saves significant time compared to using the entire percep-
tion models in VAG Plan B. Table 3 shows that the training
time for all perception decoders ranges from 3.5 to 8 hours,
which is significantly less than the time required for gen-
erating large quantities of synthetic annotations (e.g., 80k)
during the subsequent synthesis phase.

C.6 Hyperparameters for our C2I model in MIM-
CSG
Table 4 elaborates the hyper Hyperparameters for our C2I
model in MIMC scene generation process.

C.7 Case Analysis of SOTA T2D Methods
As shown in Table 5, the information presented includes
the image composition used to generate synthetic images,
the dense captioning generated from these images by Con-
trolCap (Zhao et al. 2024), and the refined text prompts.
These refinements involved removing extraneous details, ex-
cluding color information, and ensuring accurate category
names. Additionally, the table includes the random seed
employed by the state-of-art text-to-data (T2D) method,
DatasetDM (Wu et al. 2023a), to generate images based on
the refined prompts. This setup enables a fair and objec-
tive comparison of the image generation quality between our
FlexDataset and the current state-of-the-art T2D methods.

D. Extended Qualitative Analysis of Downstream
Task Performance
Figure 4 illustrates the impact of incorporating synthetic
data generated by FlexDataset on depth estimation perfor-



Content-aware Embedding

dIC 64

Context-aware Embedding - LTE

Hidden Channels 256

Transformer Depth 6

Number of Heads 8

Encoding the Entire Image

dI 3

Downsampling Scale 32, 64, 128

Resolution 128, 64, 32

Encoding Each Pixel

dpixel 32

Encoding the Context-aware Categorical Embedding

In Channels 64

Out Channels 32

Final Attention Calculation

Downsampling Scale 8, 16, 32

Resolution 32, 16, 8

LTE - Number of Attention Blocks 1

LTE - Number of Heads 4

Composition-conditional Diffusion (Denoising)

In Channels 3

Out Channels 6

Hidden Channels 256

Channel Multiply 1, 1, 2, 2, 4, 4

Number of Residual Blocks 2

Dropout 0

Diffusion Steps 500

Noise Schedule linear

Training Hyperparameters

Batch Size 32

Mixed Precision Training Yes

Weight Decay 0.0001

Classifier-free Dropout 0.2

Epochs 200

Table 4: Hyperparameters for C2I model in MIMCSG.



Figure 4: Examples of Depth Estimation Results on NYU Depth V2. The first row illustrates the test images, the second
row presents the prediction outcomes from the baseline model (DepthFormer (Li et al. 2022)), and the third row demonstrates
the prediction outcomes after incorporating synthetic annotated data generated by FlexDataset during training. FlexDataset
enhances the performance of the targeting perception model (DepthFormer).

mance using the NYU Depth V2 dataset. The top row dis-
plays the original test images used for evaluation, serving as
the input for the depth estimation models. The middle row
presents the baseline predictions, which are the outputs of
a standard depth estimation model, such as DepthFormer.
These results provide a reference point for assessing model
performance without additional synthetic data. The bottom
row shows the predictions after the model has been trained
with synthetic annotated data from FlexDataset. Notably,
these predictions exhibit significant improvements in depth
accuracy and detail, highlighting the efficacy of FlexDataset
in enhancing the model’s perceptual capabilities. This sug-
gests that the inclusion of synthetic data can significantly
bolster the model’s ability to generalize and perform in di-
verse scenarios.

Figure 5 provides a comprehensive overview of the per-
formance across multiple downstream tasks, including se-
mantic segmentation, instance segmentation, salient object
detection, depth estimation, and zero-shot segmentation.
Each panel from left to right represents the progression from
the real image to the corresponding outputs for each task.
This visual comparison underscores the versatility and effec-
tiveness of the FlexDataset framework in improving various
perception tasks. The results demonstrate that FlexDataset
can effectively generate high-quality synthetic data that en-
hances model performance across a range of challenging
tasks, particularly in scenarios where labeled data is scarce
or unevenly distributed.

E. Societal Impacts
FlexDataset, having been trained on real-world datasets like
COCO 2017 (Lin et al. 2014), has a strong ability to learn
and replicate data distributions. While this capability is pow-

erful, it raises considerations regarding potential copyright
infringement, as the model might inadvertently reproduce
copyrighted material. Moreover, with the introduction of
our composition-to-data paradigm, FlexDataset can generate
customized images based on user-provided compositions. Its
ability to reference and combine multiple subjects allows
for the creation of novel and diverse image compositions.
However, this feature also introduces the risk of generating
deceptive images, particularly those that depict subjects in
unrealistic combinations. This potential for misuse presents
an ethical challenge that needs further exploration. Ensur-
ing the model is used responsibly, and avoiding the creation
of content that might infringe on personal privacy, are areas
that warrants future attention.

F. Limitation and Future Work
Despite the significant progress across various metrics of
FlexDataset, generating highly realistic images without dis-
tortion or object overlap remains challenging, especially in
complex MIMC layouts. A potential direction for future re-
search is to explore the integration of text-to-data meth-
ods with our approach. Utilizing parameters pre-trained on
large text-image datasets could improve the model’s ability
to generate high-quality images in a wider range of scenar-
ios.



Image Composition Text Prompt Generated by
ControlCap Refined Text Prompt Random

Seed
bounding boxes:
[0.225, 0.366, 0.431, 0.751],
[0.735, 0.363, 0.829, 0.793],
[0.526, 0.488, 0.662, 0.787],
[0.0, 0.0, 1.0, 1.0]
categories:
[”person”, ”person”, ”person”,
”playingfield”]

A daytime baseball game
with a man swinging a
bat while standing at home
plate, a man crouching, and
a man watching the play.

A daytime baseball game
with a person swinging, a
person crouching, and a per-
son watching on a playing
field.

1947672

bounding boxes:
[0.078, 0.500, 0.344, 0.750],
[0.656, 0.500, 0.922, 0.750],
[0.0, 0.500, 1.0, 1.0],
[0.328, 0.0, 0.828, 0.750],
[0.0, 0.0, 0.375, 0.750],
[0.625, 0.0, 1.0, 0.750]
categories:
[”car”, ”car”, ”road”, ”sky”,
”house”, ”house”]

Two cars, one gold and one
silver, parked on a wide
street between old buildings,
with the sky visible in the
background.

Two cars parked on a road
between houses, with the
sky visible in the back-
ground.

273946

bounding boxes:
[0.277, 0.101, 0.689, 0.326],
[0.0, 0.0, 1.0, 1.0],
[0.100, 0.538, 0.783, 1.0],
[0.0, 0.258, 0.464, 0.652],
[0.483, 0.215, 0.892, 0.522],
[0.446, 0.202, 1.0, 0.645],
[0.584, 0.336, 1.0, 0.536],
[0.769, 0.230, 0.952, 0.355]
categories:
[”bowl”, ”floor-tile”, ”bowl”,
”bowl”, ”broccoli”, ”bowl”, ”car-
rot”, ”carrot”]

Four blue bowls on a ta-
ble, filled with tomato soup,
pumpkin soup, a salad with
carrots and broccoli, and
a creamy vegetable stew,
placed on a smooth surface.

Four bowls on a table, filled
with tomato soup, pumpkin
soup, a salad with carrots
and broccoli, and a creamy
vegetable stew.

694937

Table 5: Examples of analysis on text-to-data cases. The first column represents the image composition used by our C2I model
to generate the synthetic image. The second column shows the dense captioning generated by ControlCap (Zhao et al. 2024)
based on our synthetic image. The third column presents the final refinement of the text prompt, where refinements include
removing color information of objects, eliminating extraneous details, and replacing the category names of important instances
with those from the composition. This ensures that all categories in the composition are accurately reflected in the text prompt.
The last column indicates the random seed used by DatasetDM (Wu et al. 2023a), a text-to-data method, to generate images
based on the refined text prompt. We can then conduct a qualitative analysis by comparing the image quality generated by our
C2I model and DatasetDM.



Figure 5: Visualization for Downstream Task Performance. The panels from left to right represent: real image, results for
semantic segmentation, instance segmentation, salient object detection, depth estimation, and zero-shot segmentation. The real
images are sampled from COCO 2017 (Lin et al. 2014).
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